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Trefoil Symmetry IV: Basic Enhanced Superspace
for the Minimal Vector Clover Extension

L. A. Wills-Toro, %% L. A. Sanchez® and X. Leleu?
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We construct a differential representation and covariant derivatives of the minimal vector
clover extension of the Poinaglgebra. In analogous way as in the supersymmetric
case, there arises an enhanced superspace which allows to define superfields. The action
of group transformations on such superfields determines a representation out of which
the covariant derivatives are obtained.

KEY WORDS: supersymmetry; superspace; graded symmetries; noncommutative
field theory; representation theory.

1. INTRODUCTION

The novel extensions of the Poineadgebra proposed by the so-calteoil
symmetries in literature (Wills-Toro, 2001a,b; Wills-Toebal., 2001) provide a
promising approachto tackle very old problems in quantum field theory (QFT). The
trefoil symmetries generalize the mathematical structures that lead to supersymme-
try while maintaining the main portion of the hypothesis of the Coleman—Mandula
and Haag=bpuszanski—Sohnius no-go theorems (Coleman and Mandula, 1967;
Haaget al,, 1975). The trefoil symmetries involving onBy, x Z4 graded symme-
try generators and only multiplets of generators of integer spin have been called
cloverextensions.

A minimal nontrivial clover extension involving only vector multiplets of
symmetry generators was obtained in literature (Will-Toro, 2001a) that has been
called theminimal vector clover extensiofror a brief review see Appendix A.
Using this symmetry, the aim of the present paper is to develop the superspace
formalism—Section 2, a suited algebra of graded differential operators—Section 3,
the determination of a representation of such symmetry generators—Section 4, as
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well as the corresponding representation for its covariant derivatives—Section 5.
After the concluding remarks we include the algemiaimal vector clover exten-
sionand its structure constants—Appendix A, some useful formulae on the metrics
and the arrays of structure constants—Appendix B, and some algebraic relations
among covariant derivatives—Appendix C. The later will give the reader some
tools employed for concrete model building in the forthcoming contributions of
this paper series.

2. ENHANCED SUPERSPACE

The superspace formalism constitutes a very powerful tool for the construction
of models in supersymmetry (Ferratal,, 1974; Ferraraand Zumino, 1975; Salam
and Strathdee, 1974). We develop here a superspace formalism for the minimal
vector clover extension introduced in Wills-Toro (2001a), whdég X Z4; q)-
graded Lie algebra is given in Appendix A.

We want to represent the algebra on superfiéldso that for each symmetry
generatol© we obtain a differential operatép that reproduces the action of the
operator on a superfield:

i[O, ®] =80®; VO € algebra (2.1)
From the algebraic relation
[0,0] =i0", (2.2)

assuminghat the trivialindexis assigned®(i.e. S(®) = 8 = (0, 0) € Z4 X Z4)
and using the graded Jacobi associativity, we obtain

i[—i[O, O, ®] =[80,80]®. (2.3)
Accordingly
[60,80] = dor. (2.4)

To obtain the transformatiords, O € algebra, we study first transformations in-
volving nonvanishing parameters only for the genera®@gg., Ty, Tayi, Piju-
This subset of generators builds a nilpotent subalgebra as can be inferred from
the g-commutator relations given in Appendix A: at most trigleeommutators
can be nonvanishing. Wessumdrom now on that monomials involving identi-
cal subindex and superindex pairs have a summation over all allowed values for
such an index. This rule disregards minus signs that are only relevant for grading
index assignments. For a brief review of the grading group and its notation see
Appendix A.

A (finite) symmetry transformation involving the mentioned subalgebra will
have the form

(ifﬁi T+ &)+ P(J)u)

G(x. &€ p) = €0 Fonthiizs : (2.5)
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The parameterg’, &, g@{ , B;y carry, respectively, the grading indiceg0)u,
—(i)r, —=(@i)r, —(i)u so that they provide products in (2.5) carrying neutral index,
and thus building a Lie group element (Wills-Toro, 1997, 2001a). Notice that
in order to emphasize the different roles played by parameters and symmetry
generators, the class component indices of the parameters are denoted to the left
of the class indices, and they carry the overall sign of its group element.

We consider now the products of two group elements. For that we recall the
Baker—Campbell-Hausdorff formula

eAeB — eA+ B-+(1/2)[A, B]+(1/12)[A,[A,B]]-(1/12)[B,[A,B]] +--- . (26)

Since there are no nontrivigtcommutators of order higher than three for the cho-
sen generators, all the relevant terms are those explicitly given in (2.6). Recalling
that the connection among the Lie algebra and the graded Lie algebra (Wills-Toro,
1997, 2001a) is given by

[0450ws: @5y O] = @y @45 [Owws: Oyl (2.7)
we obtain
G(a, p, p,®)G(x,§, 8, B) = G(X,&,&, B), (2.8)
where, fori, j, k € {1, 2, 3 we have
o) = Bi) +ag, (2.9)
£—r —r —r i —p —o.r .
iy =& trp + > Zﬁ(kfi)a(k) n (K Kti)sp, (2.10)
k2
é(,) - s(l +,0(, +5 Zﬁ(kT.)“(kaAr(k KT1)op, (2.11)

X0 =Xo T30 +Z <{ (Boy Pey — 2yé0))

1 . .
(Bay — ey Zﬂ(km“(k) ”r(k:kT')ap}Kr(l)u“

P .
+ {5 (Boy i) — oy 'éa) )

50) Gy Zﬂ(k’rl)a(k)ﬁf(k'k“)ﬂp}Kf(i)\;ﬂ)a
(2.12)

The representation in terms of differential operators requires the formal definition
of derivation with respect to graded parameters. The following section is devoted
to this aim.
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3. GRADED DIFFERENTIAL OPERATORS

The index assignment for the parameters is given by the index-assigning
function §.:

S(x@) = S(x-u©) = O = (O,
S(&)) = S(E=m) = —0)r, 3.1)
($(| ) S( —f(i) ) = —(i)f',

S(Bay) = S(B-0t)) = —(i)o,

where the relation among parameter (variables) with upper and lower indices is
given by

X =€ () x (0} »

Xy = € (Drsxgy (3.2)

gff(i) = E_f(i )fsg(BS,

B-oty = € ()opByy -
The invariant metrics and some useful relations among the structure constant arrays
are given in Appendix B.

We introduce formal differential operators following (Wills-Toro, 1994), with
index assignment given by

S X(Eﬁ‘) S(9x0) = O = (O,
S(87) = S (8.,) = (), (3.3)
S () = S(0%,,) = O,

S(3s7) = &(9p..) = (i)o

The defining relations for the action of differential operators on graded param-
eter variables is given as proposed in Wills-Toro (1994). They are just the ar-
ticulation of a g-Leibnitz rule for the derivation with respect to graded
parameters:

[[BXU xol=68  [3% .0 xvoll =8,

[og; sl =87 [0 §-s0]] =& (3.4)
[[35(;;, g(I_)s]] =5, 19 (). é?_—'s(i)]] = 5L,

(367 By I =85, (9600 B-si0]] = 8-
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All further g-commutator combinations of such differential operators and param-
eters vanish with the exception of

[[ax&fl’ x—vo]l = SO (900 X(B;]] =€" (0",
[[8%‘(?)’ ’ g—t(i)]] = ET(i )tl’! |]:8§4(i)’ E(T)t]] = ET(i )tr! (35)
[og 50l =€ @, [05, 5 ] =€ O,

[[aﬂ(l_>”1 ﬂ*p(i)]] = 6P(i ),OU! ”:aﬁ,g(i)v ﬁ(T)p]] = 6P(i)p(ra

which follow from (3.2) to (3.4). When the reader becomes familiar with the

properties of graded operators, he/she might repib%‘;e bY 90y, Oy DY 8(‘6)

and so on.

From theg-commutator property

[Aa, BoCc] = [Aa: Bol Cc + Ga,bBol Aa, Ccl. (3.6)

the action of derivatives on products is easily inferred.

4. BASIC REPRESENTATION OF THE GENERATORS

From the transformation of parameters, €, &, 8) — (X, €, &, B) we can
obtain a representation of the generators in terms of graded differential operators.
This representation will be called tihasic representatiarit can be considered a
real representation since it handles ¢hendé variables on the same footing.

SPow = 3)@;,
i —V g K (i
ST = 35(.’{ - Eﬂ(i) Kr(I)UMaX(B;‘u
i —V L
bty = gy — 3P0 Ki () 9y (4.1)

i _ . NP
8, = g — 5 ; AN G (SN P (SR
1
i .
- E(S(k)r Kr (K)," + &gy Kr‘(k)au)ax(g;‘
0

1 _ . P W . .
-5 gkjﬂ(k‘;i)ﬂg;{n' (KT, K)o K, A+ 77 (K T, K)o KF (), } 8,00

Observe that we writé (i) /* with undottedr index andK /(i) * with dottedr
index as it follows after applying involution to the correspondingommutation
relations. Strictly speaking, we should wrigg instead ofs in the equations
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above. But the differential representation considered here refers to the same fixed
superfield®, so we will use easy notation, and skip this reference.

It is a long, but straightforward calculation to verify that this differential
representation (4.1) fulfills the relations (2.4) for the corresponding ones in (2.2)
for the minimal vector clover extension:

|]:5P(k),,! 5F’(j)ctjl] = _|(77r (kl j)GO( ST(kﬂ)r + ;]r (kl j)o‘ﬂt‘sf(kﬂ),:)! fork ?é j’

4.2)
[[‘ST(J')S’ 5P(k)a]] = _i‘SJkKS(k)aM‘SP(o)w 4.3)
[[‘ST_(i)'s’ Spw, ]| = _i‘sjkk's(k)aM‘SP(ow (4.4)

and all the furtheg-commutators between these differential operators vanish.

There remain to determine the differential operators associated to the Lorentz
generators. The corresponding operators can be inferred using the close analogy
with the supersymmetric case:

510 = dow©@ Xy " (1, 00,8, + dyr iy o (i, ) 0

X©)
+ 0y By o), B0 (4.5)
8o = X0 (1 Oy + 87 (D ) Be-s)
V=P
+ Byo (i, J)pvaﬁ(*jf~ (4.6)

The connection with the standard form used for presenting Lorentz generators is
given by the formula:

Maﬁ = ieffaﬂ (O‘P(i, O)MVT(o)i — OTP(i, O)UHT(Q)i), (4.7)
where e?#°T = —eqg5. is the totally antisymmetric Levi-Civita tensofyios =

—€9123— 1. The Levi—Civita tensor can, in turn, be expressed in terms of the
symmetric vector metric and Lorentz representation by

€T =i(e Py ari, O)"M — Py a" i, O)/‘M) O O)‘SE
- i(eP(O)ﬂ”aP(i, O)lf —eP0y"a P, O)f) O 0)55.
(4.8)
We can imagine that there might be a Levi—Civita tensor associated to the novel

classes. We will address this and further questions in a forthcoming contribution
of this paper series on Casimir operators.

5. COVARIANT DERIVATIVES BASIC REPRESENTATION

Once the differential relation for the minimal vector clover extension has been
successfully constructed, there appears naturally the question about the existence
of covariant derivatives. These might be gained from the action of the differential
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operators from the right (Ferrasd al., 1974). The covariant derivatives are dif-
ferential operators thaj-commute with all the novel generators of the minimal
vector clover extension and with the generators of the space—time translations. We
define the covariant derivative in close analogy with the supersymmetry case:

NP
Dy = By + E'B(i) Kr(')uﬂax(gﬁu (5.1)

[
D7, = ag(i—)i + E'B(i)v K; (|)vﬂ8X(B;L, (5.2)

i _ . A .
DP(k)n = aﬁ(;;’ + E Xk:ﬂ(ké;i){r/r (kTi, k)paag(j)r + 77r (kti, k)paag_(i*)’ }

i
i — A
(6 K00 + B R0 3,

1 - _ o
12 ;ﬁw?nﬁ&f{nr (K11, K)o Ky (),

7 (kL K)o KEG), 8, (5.3)
With these definitions we verify
HDT(j)s' 8P<k)a]] =0, [[D-F(i)'s’ ‘SP(k)n]] =0, (5.4)
[Drer 810 1 = 0. [D7ye 87, ]| =0, (5.5)
[Drye 07,1 =0, [Dx,. 6%, =0, (5.6)
[[DTms' 8P(0)u]] =0, [[D-F(i)'s’ ‘SP(om]] =0, (5.7)
[[DP<k)o’ 8P<j)a]] =0, [[DP<k)o’ 8P<0>u]] =0, (5.8)
[Dru.. 61, 1 =0, [Day,. 8%, =0. (5.9)
The covariant derivatives among them fulfill the followiggcommutation rela-
tions:
[Dew. - Dryy | = i(1 (K, [oa Dy
+ 7" (K, ))oa DTy yy)s TOrk # J, (5.10)
[[DT(iJS’ Dp(k)”l] = i8jk Ks(K),* 3X(5)M (5.11)
[D7: Dry, ]| = 18k Ks(k),”" Nyt (5.12)

and all the furtheg-commutators among covariant derivatives vanish. We observe
that the main features of the supersymmetry case are maintained, namely, the
covariant derivativeD is obtained changing the sign of the explicit imaginary
unit in the representatiody.
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The operatobo fulfills an algebra very close to the minimal vector clover
extension algebra up to a facterin the result of thej-commutators, as expressed
in (2.2)—(2.4). The covariant derivativ&, fulfill algebraic relations which co-
incide with those of the minimal vector clover extension up to a fa¢tadn the
result of theg-commutators. Actually, a whole set of algebraic relations is ob-
tained in analogous way as done in the supersymmetry case. Some useful relations
relevant for model building, construction of projector operators, etc. are given in
Appendix C.

6. CONCLUSIONS

One of the basic challenges of any symmetry in QFT is its realizability in con-
crete sensible models. This exploration points the convenience or inconvenience of
certain options. The trefoil symmetries have been developed having in mind very
concrete applications. The construction of such concrete models for the minimal
vector clover extension is made transparent using the powerful methods of super-
space formalism. The construction of concrete representations arises naturally as
well as the corresponding covariant derivatives. All the features observed in the
supersymmetric superspace formalism are obtained for the minimal vector clover
extension case. The reader could wander about the existence of further represen-
tations, as the chiral and antichiral representations of supersymmetry. In the next
contribution of this paper series, we determine novel representations as well as the
relations among the diverse representations.

APPENDIX A: THE MINIMAL VECTOR CLOVER EXTENSION

Thetrefoil symmetriesire graded Lie algebraic extensions with involution of
the Poincag algebra (Wills-Toro, 2001a,b; Wills-Toet al., 2001). These exten-
sions respect slightly more generalized hypothesis than the ones underlying the
no-go theorems in Coleman and Mandula (1967) and léaaty(1975). Here, the
Poincag generators do not always act through commutators on further symmetry
generators, and more generally, the group structure has an undetlyipegfaded
Lie algebraic structure with involution. For a basic introduction to these algebras
and group gradings see Wills-Toro (1995, 1997, 2001a).

The trefoil symmetries certainly include supersymmetry, whicl¥is-graded
extension of the Poincaralgebra. The trefoil symmetries which involve only
Z4 x Z4-graded parameters and novel generators of integer spin have been called
clover extension@Wills-Toro, 2001a,b; Wills-Toreet al., 2001). We call thenin-
imal vector clover extensiom (Z4 x Z4; q)-graded Lie algebraic extension of the
Poincag algebrawhich is minimal (no subalgebra extends nontrivially the P@ncar”
algebra) and whose novel generators build symmetric and antisymmetric vectors.
In this extension a space-time translation is obtained through the composition of
three symmetric vectors.
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Table Al. Addition Table of the Groufs x Z4

+ (0)0 (0)1 (0)2 (0)3 (1)0 (1)1 (1)2 (1)3 (2)0 (21 (2)2 (2)3 (3)0 (3)1 (3)2 (3)3

(0,0)= (0)0 |(0)0 (0)1 (0)2 (0)3 (1)0 (1)1 (1)2 (1)3 (2)0 (2)1 (2)2 (2)3 (3)0 (3)1 (3)2 (3)3
(2,00= (0)1 |(0)1 (0)0 (0)3 (0)2 (1)1 (1)0 (1)3 (1)2 (2)3 (2)2 (2)1 (2)0 (3)2 (3)3 (3)0 (3)1
(0,2)=(0)2 |(0)2 (0)3 (0)0 (0)1 (1)2 (1)3 (1)0 (1)1 (2)1 (2)0 (2)3 (2)2 (3)3 (3)2 (3)1 (3)0
(2,2)=(0)3 |(0)3 (0)2 (0)1 (0)0 (1)3 (1)2 (1)1 (1)0 (2)2 (2)3 (2)0 ()1 (3)1 (3)0 (3)3 (3)2
(1,0)= (1)0 |(1)0 (1)1 (1)2 (1)3 (0)1 (0)0 (0)3 (0)2 (3)1 (3)2 (3)0 (3)3 (2)1 (2)3 (2)2 (2)0
(3.0)= (1)1 | (1)1 (1)0 (1)3 (1)2 (0)0 (0)1 (0)2 (0)3 (3)3 (3)0 (3)2 (3)1 (2)2 (2)0 (2)1 (2)3
(1,2)=(1)2 |(1)2 (1)3 (1)0 (1)1 (0)3 (0)2 (0)1 (0)0 (3)2 (3)1 (3)3 (3)0 (2)0 (2)2 (2)3 ()1
(3.2)=(1)3 |(1)3 (1)2 (1)1 (1)0 (0)2 (0)3 (0)0 (0)L (3)0 (3)3 (3)1 (3)2 (2)3 (2)1 (2)0 (2)2
(0.1)=(2)0 |(2)0 (23 (2)1 (2)2 (3)1 (3)3 (3)2 (3)0 (0)2 (0)0 (0)1 (0)3 (1)1 (1)2 (1)0 (1)3
0.3)= @21 |21 2)2 (2)0 (2)3 (3)2 (3)0 (3)1 (3)3 (0)0 (0)2 (0)3 (0)1 (1)3 (1)0 (1)2 (1)1
(23)=(2)2 |(2)2 21 (2)3 (2)0 (3)0 (3)2 (3)3 (3)1 (0)1 (0)3 (0)2 (0)0 (1)2 (1)1 (1)3 (1)0
21)=2)3 |(23 20 (2)2 (2)1 (3)3 (3)1 (3)0 (3)2 (0)3 (0)1 (0)0 (0)2 (1)0 (1)3 (1)1 (1)2
(3,3)=(3)0 |(3)0 (3)2 (3)3 (3)1 (2)1 (2)2 (2)0 (2)3 (1)1 (1)3 (1)2 (1)0 (0)3 (0)0 (0)2 (0)1
1L.1)=@)1 |3)1 (3)3 (3)2 (3)0 (2)3 (20 (2)2 (2)1 (1)2 (1)0 (1)1 (1)3 (0)0 (0)3 (0)1 (0)2
(1,3)=(3)2 |(3)2 (3)0 (3)1 (3)3 (2)2 (2)1 ()3 (2)0 (1)0 (1)2 (1)3 (1)1 (0)2 (0)1 (0)3 (0)O
(3.1)=3)3 |(3)3 (3)1 (3)0 (3)2 (2)0 (2)3 ()1 (2)2 (1)3 (1)1 (1)0 (1)2 (0)1 (0)2 (0)0 (0)3

Thegrading groufd, x Z4 hasthe addition given by Table Al. The conversion
between the standard notation on the group elements (as coupl@a} With
n,me {0, 1, 2, 3) and the notation used in this application is also given there.
Theqg-function is given in Table All.

Table All. g-Function forZa x Za

g%+xZs 1(0)0 (0)1 (0)2 (0)3 (1)0 (1)1 (1)2 (1)3 (2)0 (2)1 (2)2 (2)3 (3)0 (3)1 (3)2 (3)3
©o»=@©o| 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o)=@©1] 2 1 1 1 1 1 1 1-1 -1 -1 -1 -1 -1 -1 -1
(0,2)=(0)2 1 1 1 1-1-1-1-1 1 1 1 1-1 -1 -1-1
@2=©03] 1 12 1 1-1-1-1-1-1-1-1-1 1 1 1 1
@o=@o| 1 1 -1 -1 1 1 -1 -1 i — - i =i i =i i
GoO=@W1]| 1 1 -1 -1 1 1 -1 -1 —i i i —i i - i i
(1,2)=(1)2 1 1 -1-1-1-1 1 1 i = =i i i = i =i
G=@)3] 1 1 -1 -1 -1 -1 1 1 —i i i =i —i i —i i
oH=@Eo| 1 -1 1 -1 —i i - i 1 1 -1 -1 i —i —i i
03)=@1]| 1 -1 1 -1 i < i - 1 1 -1 -1 < i i —i
(2,3)=(2)2 1 -1 1 -1 i = i - -1-1 1 1 ‘i< - |
en=E3] 1 -1 1 -1 - i - i-1-1 1 1 < i i -i
B3)h=@E0| 1 -1 -1 1 i —i - i - i - i 1 1 -1-
@hH=@E1| 1 -1 -1 1 —i i i - i - i - 1 1 -1-
(1,3)=(3)2 1 -1 -1 1 i = = i i < i< -1-1 1 1
GH=@E3]| 1 -1 -1 1 —i i i - —i i - i-1-1 1 1
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Table Alll. Addition of Class Indice&, x Z»

T ©) ) @) ©)
(0) ) ) @ ©)
M M © (©) @)
() &) (©) © )
®3) 3) ) (1) (0)

In Tables Al and All, we have divided the 16 group element&pok Z,4 into
four classes. The class (0) contains the indices associated to the Bgjenarators
{(0)o, (0)q, (O), (0)3}. The class (0) is itself a groufs, x Z,. The classes (1), (2),
and (3) contain indices which remain in the same class when you add elements of
the class (0). This indicates that the classes (0), (1), (2), (3) provide the cosets of
indices available for building novel invariant multiplets of generators.

From Table Al, we obtain Table Alll for the addition of class indicg&s
Z4)/(Zy x Z3) ~ 7y X Zp. We write § 1 j) instead of () 1 (j).

We write the Poincaralgebra in terms of irreps of the Lorentz subalgebra.
For that the Lorentz generatok*’ themselves are rewritten as

1 - R !
J = EéijkMJka Ji =M%,

1 s — 1 -
Toi = E(JI +1iJy), T = E(JI —1iJj).

The Poincag algebra becomes

[Ty Toi ]l = i€k Tox: [Ty T ]| =0, [Toy» To ]| = ieii Teox-

[Ty Poy ]l = =io ", 0),” Py, [Teons Poy ]| = =iy, com Py (i, Y,
[Poy: Pon] =0, (A1)

for which theg-commutators coincide with commutators. This algebra is extended
for f,i, j,k,1 =1, 2, 3 through theninimal vector clover extension

[Tox: Py ]l = =io G, 1), Peoyp,

[ Toy» Peoye]l = =idion.crw Pnyo oG, £)5, (A2)

[T Tensll = —io TG, ) Tie, [Tons Tns] =0,

[Toi. Ts =0, [Ty, Tins]] = —idoy.(tys T a0, )y (A3)
[Pow: Pinll =0, [Py Py ]l =0, (A4)
[Pow: Tl =0, [Py Tens]l =0, (AS)

[Tos Tixl =0, [Tos Tol =0, [Tos Tl =0, (A6)
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Table AlV. o7 Matrices

(f) Spin(1, 0) o' (1, f) o' (2, f) aT(3,f)
T 00 0] [0O0 1] [ 0-1 0]
0) To) 0 0-1 0 0 0 1.0 0
| o1 0] |-100] | 0 o0 0]
00 0] [0o0 1] [ 0-1 0]
1) T 0 0-1 0 0 0 10 0
| 01 0] |-100] | 0 o0 0]
T 0-1 0] [ 000 [0 0 1T
@) To 1.0 0 0 0-1 0 0 0
. o oo | 0o10] |[-1 0 0]
00 1] [ o0-1 0] [0 0 0]
©) T 000 100 0 0-1
-1 00/ | 0oo0oo] |01 0]
[Paye Py | = 17 D)oo Tatiye + 787G Do Tasies 1 # b (A7)
[Teor» Py ]l = S Ke (1), Py,
II'F(k)f, Poy]] = 8w Rr(D,f Poyw» (A8)

An adequate choice for the’ -matrices for spin (1, 0) irreps in the different classes
is given in Table AIV witho T (j, f) = o7 (j, f)*'". A suited choice of spinj, 1)
irreps for the different classes is given in Table AV for generic séjn}q 4-vectors
Py with o P (j, f) = o P(j, f)*".

Table AV. ¢P Matrices

(f) spin, 3) aP@, f) oP@, 1) aP(@3, f)
T0-i 0 0] [0 0-i 0] [0 O 0
i-i0oo0o0| ;0001 ;0 0-10
© Po) 2l 00 0-1| 2|- 00 0| 2/ 0 1 00
oo 10 |o-100] |- o000
f0-i 0 0] [0 O0- 0] [0 0 0
=000l ;0001 ;| 00-10
@ P 2l 00 0-1| 2|-i 00 0| 2l 0 1 00
l oo 10 |o-100] |- o000
00 0-] [0 00] [0 0-i 0
0 0-1 0 io0o0 o0 000 1
1 1 1
@ P@) 2l 01 00| 2/ 00 0-1| Z|-i 00 o0
i oo0oo0] |oo0o10 |o0-10 0]
F0 0-i 0] [0 0 0-i] T[0- 0 0
000 1 0 0-1 0 00 0
1 1 1
® Pe) 2l i 00 0| 20100/ 2000 0-1
o100/ |-io0oo00] |00 1 0
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Table AVI. 5" (i, j) Matrices,ijk € {123, 231, 31P

(i, §) n?(i, §) (i, §)

100 0 0 i 00 00 0 i
000 1 0010 i 000
&l o_1 0 0 & i 00 o] *o0oo0o 10
0010 0 0 0-1 0100

The n-matrices forijk € {123, 231, 312 are given in Table AVI, and the
furthern-matrices are obtained using (A9).

_q(j)v,(i)u’?r(i- j);w = Ur(ja i)vu = 7A7r (i, j),*wa (A9)
— iy, @i (0 Do = 77 Do = 0"(1, 1

The K -matrices are given in Table AVII. Thié-matrices are obtained using
(A10).

Ke(1),” = —doy, 0y Ke (1), (A10)
Then- and theK -matrices are constrained by the conditions (A11)—(A12).
3 :
aiby + axh, + azbs = Ero(l - I); rp e R, (All)
ajbj —iajbj =ro(1—1i); j=1,23 (A12)

A particular choice of these constraints respecting the symmetry among the novel
classes is given by (A13):

aj=a bj=bl-i); abeR\{0}; ro=2ab; j=1,2,3 (A13)

Table AVII. K, () Matrices

(f) Ki(f) Ka(f) Ka(f)
f1 0 0 O] o 0 0 i T 0 0—i 07
0100 0 010 0 00 1
@ biig 0 1 ol ®lo-1 0 0 bil {90 o
|0 0 0 1] i 0 0 0] | 0-1 0 0]
f1 0 0 O] fro i 0 0] T0 0 0-i
0 010 000 1 0100
@) b2l g 0 0 1| P20 0-1 o b2l 9 0 0
0 1 0 0] i 0 0 0] | 0 0-1 0]
f1 0 0 O] fro o i 0] T 0—i 0 07
0 00 1 0100 00 1 0
@) sl g 1 0 ol ™o o 0-1 bs| i 0 0 o
0 0 1 0] i 0 0 0] | 00 0-1]
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The existence and exhibition of a differential representation for the clover
extension is presented in the main text.

APPENDIX B: METRICS AND USEFUL IDENTITIES

The metrics T (f) compatible with the 2 spin (1, 0) irrefgy) and the metrics
T(f) compatible with the spin (0, 1) irrefigr) are given by

[—1 0 O] 1 00
eT0)s=€'(0=| 0-1 0| ,e'(iys=€¢'()s=|(0-1 0f ,
0 0-1]. |0 0-1],
(B1)
_ ~ [-1 00 ~ 1 0 0]
e Qys=€e(0f=| 0-1 0 ,e(i)s=c ()*=|0-1 0] ,
| 0 0-1]. 0 0-1],,
(B2)

fori =1, 2, 3. The metricgP(f) compatible with the spin%(, %) irreps Psy are
given by

€P(0),, = €70y = : (B3)

OOOH
l—‘OOO

Iy

€P(i) = €P ()" =

0
-1
0-—
0
0
1
0

0
0
1
0—
0 0
0 O
-1 0
0-1

OOOI—‘

nv
fori =1, 2, 3.

Some useful identities among the structure constant arrays and the metrics
are given along the lines of an analogous appendix in Piguet and Sibold (1986):

lio?(j, f),io?(k, )] =ieju(io?(, 1)), (B5)
[ = g0y, ()2, ), —idox,na (k. )] = i€ju (= igoy,na?(, f)), (B6)

where the commutator has the usual meaning, arslands for any arbitrary
irrep.

KE(i) e (1) P ()7 Ks(i),, = 302”0y, (B7)
K () e (i) 5P ()7 Ko(i),” = 3b72P 0y, (B8)
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Ay (Dot (s Duo€” @V 0%, Dape ()7 = 4ie™ (1 1])°a% ;. (BY)

oo (s o€ (Y70, Dape® ()7 = —4ie (i 1)) a2,

(B10)
Uiy (o' (0 o€ ()7, ape™ ()7 =0, (B11)

Aiype, (o 7 (s D o™ ()00, ape™ (1) = 0, (B12)

o P, Do + (281 — DAL oo P, ), =0, (B13)

o P, D)oy + @35 = D" Do P §) = 0" Do (LT T

o (1), §)pw + @85 — DG, Depo T, 0).0 =0, (B14)

G0, DL Do + @85 = D Do 1), = 3G s (L),

KiK), o (1,0) =0"(,k), KjK),,, (B15)
Kj(),'o"(1,0)/ = (28K — 1)o (1, k), K[ (K),” + o7 (I, k) "Kmn(K),”-
(B16)
{n" (@, 2K (3) + 7 (L, 2),u Ki (3),}
+ Uwp, @u+@w {1 (2, 3w Ke (1), + 77(2, 3),,Ki (1)}
+ Awp+@u @ 1" (3, Do Ke(2),7 + 773, 1), K (2),7} = 0. (B17)

APPENDIX C: ALGEBRAIC RELATIONS AMONG
COVARIANT DERIVATIVES

We list now some algebraic relations involving covariant derivatives. As well
as with the relations among the coupling constant arrays, we identify the corre-
spondence to analogous relations in the supersymmetric case in Piguet and Sibold
(1986). These relations will play a crucial role in the construction of QFT models.

[, Deg, Dy, I| = 2181 Ki( 1)5 0, Degy, (C1)
(D Deg, Dey, [| = 26 Kf(j)GMaX&ﬁ‘ Dr). (C2)
[De, . D, Dy, ]| = =218 K: (§)," Dy 3t (€3)

[Dey,. Dy, D7, ]| = —2isi; Ke (j), Dy 0, (Ca)

X0
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[Dr,.. Dey, Dry, [l = 2i(n" (j, 1uo Driyyy + (5 Do D50 ) D,
= 2[[Dp<j)w DP(i)a]]DP(f)’ P, (C5)
1
DP("j) DT(i)r DP(j)o = Eq(i)rv(J)d(DP&)DF’(j)n)DT(i)r
1
+ 5%)0.0r Doy (D, Dy, ), (C6)
1
DT(T) Dry), D7y = Eq(i)ﬁ(J)G Dry), (DTJ) DT(i)r)
1
+ 59 (D1, D1y ) D (C7)
—_ — 1 —_ —
D7, Drgy, D1y = 50 () Dry, (DT(E) D, )

1
+ 59 (D7, D7y ) Dy (C8)

1
Drg, Dy, Dry, = 53k 0)o ( Dy, Dpy), ) Dry,
1
+§q(i)0,(j)uDP<j)u(DP(i') DP(i)o)’ (C9)

1
D15 Dy D1y = 50y Do) (Dr D)

1
+ Eq(j)r,(i)s(DT(iS) D1y.) D<;>(j)r, (C10)
1 - —
DT(‘ D( )(J) DT(. % = _Q(i)s,(j)r D(;).r (DT(?) DT(i)'s)
+ qu)r @s(D7; D7) Dy (C11)
r

[Dr;, Dy » Dy Diyy, 1| = 8ij (— 60670 — 4iK[ (i), D1y Dpg 0,1

i)~ X0)

= §jj (6 b|2|:’ +4iK, (i), DP(?) DT(E)aX(Bﬁl)’ (C12)

[[D'F(?) Dy DP("J)DP(i)a]] = ij ( - G(b*) 0 —4iK7 () HDT(. DPu) X(o))

= 5 (6(b7)°0 + 4iK; (i) D D7y 0,0 ), (C13)
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HD% Dey,. Dey Dryyo ]l = 4100, )on" (s 1o D1y Dey, Drg, +
+ 410 (o (0 Do DT Dps Drg,

+8 i(a(i’rj))z DT(HJ') Dy

- 2 _ _
_8I(a(|Tl)) DT(T’”)DT(VT'])Y, (C14)
Dp(ﬂ) D(f)r D(—) DP(i)n = D(f)r Dpﬂ Dp(i){7 D(—) y (C15)
DT Tor o Tor
Dpe Dy D D ! Dpe Dp, Do D
PO YO Py — 75 YP) YPRj, MO YO
O Ty T O 2 0T T T Ty
1 (-)2
—=Du D Dpe Dp(i) = _3bi . (C16)
2 To o Tar @ 7
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